
List of API functions

void control_CE(unsigned char input)

 //Enable or Disable chip enable signal.

 //Input = 1 � enables the signal, input = 0� disables the signal

 //Users don’t have to worry about this function.

void control_CSN(unsigned char input)

//Enable or Disable CSN signal. CSN controls the start and end of the communication between the MCU and the

RF module

 //Input = 1 � enables the signal, input = 0� disables the signal

 //Users don’t have to worry about this function.

void power_down(void)

 //You have to power down the RF module whenever it switches mode(PTX or PRX)

 //Users don’t have to worry about this function.

void power_up(void)

//You have to power up first before you set the RF module in PTX or PRX mode

//You cannot set the device in PWR_UP and PRX or PTX mode at once by writing to CONFIG register only one

time.

 //Users don’t have to worry about this function.

unsigned char read_RF_register(unsigned char addr)

//reads one byte value from any register that is one byte.

//Don’t use this unless user is fully aware of the register structure of the RF module

//addr = any register address in the RF chip

//Reads and returns a value of register(1 byte) from the RF chip

 //Users don’t have to worry about this function. Maybe used for debugging purpose

void write_RF_register(unsigned char addr, unsigned char value)

//reads one byte value from any register that is one byte.

//Don’t use this unless user is fully aware of the register structure of the RF module

//addr = any register address in the RF chip

//value = value to be written on the register.

//writes given value to register(1 byte) in the RF chip

 //Users don’t have to worry about this function. Maybe used for debugging purpose

 void clear_IRQs(void)

 //Clears all the interrupt flags set in the RF module.

unsigned char TXmode(unsigned char input)

//Configures the RF module in PRX or PTX mode

//input = 0 �PRX mode, 1 � PTX mode

 //For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

unsigned char setup_addr_width(unsigned char input)

//sets up Address Width of the data pipe

 //input = 1 � 3 byte, 2 � 4 byte, 3 � 5 byte

 //Saves address width (in values 1, 2, 3 to represent 3, 4, 5 bytes respectively) in MCU variable for future use

For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

unsigned char setup_RF_frequency(unsigned char input)

//Sets up the base frequency for RF signal

//input = 0~125

//Fo = (2400 + input)[Mhz]

//Possible to set between 2.400GHz to 2.525 GHz

//For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

unsigned char setup_RF_data_rate(unsigned char input)

//Sets up data rate

//input = 0 � 250kbps, 1�1Mbps, 2 �2Mbps

//For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

unsigned char setup_auto_retr(unsigned char delay,unsigned char count)

//Sets up the Auto-Retransmission feature in case of missing NOACK

//delay = (0 ~ 15) 0 ==> 250uS delay, 15 ==> 4ms delay

 // count = (0~15) 0 ==> no retransmission, 15==> IRQ generated after failing 15 retransmissions

//For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

void read_status(void)

//Issues NOP command just to read status

//just like all the functions, saves the value of status register in the RF module in MCU variable status

void set_RX_addr_PX(unsigned char MSByte, unsigned long LSBytes){

 //PX_corresponds to pipe number(P0~P5)

//sets up 5 byte(maximum) RX pipe address

//Only lower bytes will be used if user sets Address width that is lower than 5 bytes

//Address is arranged as {MSByte[7..0], LSbytes[31..0]}

void set_TX_addr(unsigned char MSByte, unsigned long LSBytes){

//sets up 5 byte(maximum) TX pipe address

//Only lower bytes will be used if user sets Address width that is lower than 5 bytes

//For one to one transmission, TX address should be equal to RX address

unsigned char set_payload_legnth(unsigned char input){

//Sets the the number of Bytes in RX payload

//input = 0~32; 0==> datapipe not used, 1~32 ==>payload length

//for now, we only use datapipe0

//For invalid input, returns 1 without issuing command, otherwise, returns 0 after correct operation

unsigned char read_RX_payload(void){

//reads RX payload and saves in RX_payload array

//RX_payload_array[0] stores the first data that arrived in RX_FIFO

//This function is to be executed when the RX receive IRQ is asserted

unsigned char write_TX_payload(noack){

 //no_ack = 0 ==> the module do not wait for ACK signal

//no_ack = 1 ==> the module waits for ACK signal and generates

 //Sends data from TX_payload_array to TX FIFO

//TX_payload_array goes into TX FIFO first and therefore is sent on air first.

void flush_TX_FIFO(void){

//Flushes TX_FIFO

//Flush TX_FIFO is full and the user wants to send the new data as soon as possible.

void flush_RX_FIFO(void)

//Flushes RX_FIFO

//When the read RX_payload is greater than 32 bytes, the user must execute this command as received packet is

not valid

unsigned char read_RX_payload_width(void)

//return RX payload width when using DPL feature.

void enable_TX_NOACK(void)

 //Enables TX_PAYLOAD_NOACK command

 //If TX_PAYLOAD_NOACK command is issued, the transmitter does not wait for ACK statement.

unsigned char check_MAX_RT(void)

 //returns 1 if MAX RT nterrupt flag inside the RF chip is set, returns 0 otherwise.

 //before returning, it clears all the interrupt sourses.

unsigned char check_TX_DS(void)

 //returns 1 if TX_DS interrupt flag inside the RF chip is set, returns 0 otherwise.

 //before returning, it clears all the interrupt sources.

unsigned char check_RX_DR(void)

 //returns 1 if RX_DR interrupt flag inside the RF chip is set, returns 0 otherwise.

 //before returning, it clears all the interrupt sources.

• Functions Not yet debugged.

void enable_all_pipes(void)

 //Enables transmissions from all the pipes.

void enable_pipe(unsigned char input)

 //enables only one pipe

 //input = 0~5 which specifies pipe 0~5.

